Part-of-Speech Tagging for Historical English
نویسندگان
چکیده
As more historical texts are digitized, there is interest in applying natural language processing tools to these archives. However, the performance of these tools is often unsatisfactory, due to language change and genre differences. Spelling normalization heuristics are the dominant solution for dealing with historical texts, but this approach fails to account for changes in usage and vocabulary. In this empirical paper, we assess the capability of domain adaptation techniques to cope with historical texts, focusing on the classic benchmark task of part-of-speech tagging. We evaluate several domain adaptation methods on the task of tagging Early Modern English and Modern British English texts in the Penn Corpora of Historical English. We demonstrate that the Feature Embedding method for unsupervised domain adaptation outperforms word embeddings and Brown clusters, showing the importance of embedding the entire feature space, rather than just individual words. Feature Embeddings also give better performance than spelling normalization, but the combination of the two methods is better still, yielding a 5% raw improvement in tagging accuracy on Early Modern English texts.
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملPart-of-Speech Tagging for Middle English through Alignment and Projection of Parallel Diachronic Texts
We demonstrate an approach for inducing a tagger for historical languages based on existing resources for their modern varieties. Tags from a Present Day English Bible are projected to a Middle English Bible using multiple alignment approaches and are smoothed with a bigram tagger. Finally, we train a maximum entropy tagger on the output of the bigram tagger on the target text and test it on ta...
متن کاملPOS Tagging for Historical Texts with Sparse Training Data
This paper presents a method for part-ofspeech tagging of historical data and evaluates it on texts from different corpora of historical German (15th–18th century). Spelling normalization is used to preprocess the texts before applying a POS tagger trained on modern German corpora. Using only 250 manually normalized tokens as training data, the tagging accuracy of a manuscript from the 15th cen...
متن کاملسیستم برچسب گذاری اجزای واژگانی کلام در زبان فارسی
Abstract: Part-Of-Speech (POS) tagging is essential work for many models and methods in other areas in natural language processing such as machine translation, spell checker, text-to-speech, automatic speech recognition, etc. So far, high accurate POS taggers have been created in many languages. In this paper, we focus on POS tagging in the Persian language. Because of problems in Persian POS t...
متن کاملCode-Switching Ubique Est - Language Identification and Part-of-Speech Tagging for Historical Mixed Text
In this paper, we describe the development of a language identification system and a part-of-speech tagger for Latin-Middle English mixed text. To this end, we annotate data with language IDs and Universal POS tags (Petrov et al., 2012). As a classifier, we train a conditional random field classifier for both sub-tasks, including features generated by the TreeTagger models of both languages. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016